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Abstract

Remaining unexplored environments may be hostile to
humans and have unreliable communications. Unmanned
vehicles combined with computer vision would enable si-
multaneous topological reconstruction and corrections to
pose estimates through triangulation. Although these sys-
tems and their sources of error are well studied, the ef-
fect of spatial sampling on the accuracy of topographical
reconstruction is not broadly characterized. Here, we de-
velop a software pipeline to study the effect of spatial sam-
pling on topological reconstruction with computer vision.
The pipeline begins with a simulation to model vehicles
equipped with cameras traveling over a terrain and cap-
turing synthetic images. Then, those images and pose esti-
mates are used to metrically refine pose estimates and re-
construct the terrain. The pipeline is demonstrated by char-
acterizing the tradeoff curve between image overlap (spatial
sampling period) and reconstruction error for an unmanned
aerial vehicle with a linear flight path. The robustness of
feature detectors – Harris corners, speeded-up robust fea-
tures (SURF), maximally stable extremal regions (MSER)
and histogram of oriented gradients (HoG) – to pose es-
timation error in 3D reconstruction is also assessed as a
function of image overlap. The study demonstrates the use-
fulness of the pipeline it describes in planning exploration
missions in environments with limited communications.

1. Introduction

Unmanned vehicles are essential to exploring inacces-
sible environments with limited communications like the
deep desert or planetary surfaces [1, 2]. Limited communi-
cations introduce challenges with respect to odometry and
positioning. Computer vision has provided some solutions
for both challenges [3, 4]. In particular, topographical re-
construction has been proposed as a means to explore un-
known environments strictly from images [5], or with the

addition of light detection and ranging (LIDAR) [6]. How-
ever, the effect of spatial sampling and uncertainty in cam-
era pose on the accuracy of topographical reconstruction is
not well studied in the absence of visual markers on the ter-
rain, GPS, or LIDAR.

Previous work exists which provides characterizations of
the effect of spatial sampling on reconstruction accuracy,
but these are highly dependent on the experimental setup.
The effect of spatial sampling frequency is investigated un-
der the names of image decimation, number of images, im-
age overlap, and/or number of correspondences per point.
Previous studies have characterized two cameras at ground
level to reconstruct anthropogenic structures [7], up to 30
simulated cameras in various formations facing a central
point [8], and a simulated UAV equipped with five cameras
(Maltese cross formation) flying over a terrain with build-
ings [9].

In this study, we develop a software pipeline to investi-
gate the effect of spatial sampling and pose uncertainties on
the accuracy of topographical reconstruction with images
captured from any team of mobile cameras. The pipeline
involves simulating vehicles moving over a rough, feature-
less terrain, and varying the spatial frequency at which syn-
thetic images are captured. We demonstrate the pipelines
capabilities by simulating unmanned aerial vehicles (UAVs)
on linear flight paths, and capturing oblique images. The
images captured by one of the UAVs are used to gener-
ate a trade-off curve of spatial capture frequency and cor-
responding topographical reconstruction error. The modu-
larity of the pipeline design allows for vehicle number and
dynamics, number and parameters of cameras per vehicle,
terrain, and spatial sampling frequency to be changed in-
dependently. This study could have implications for the
planning and design of missions involving positioning and
topographical reconstruction in remote areas with limited
communications (e.g. planet surface exploration, military
autonomous rovers, sea floor exploration).
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Figure 1. Block diagram of the Structure From Motion implemen-
tation.

2. Problem Statement
Figure 1 depicts our approach for reconstructing the

topology from images. The captured images are taken
from our simulation of a remote terrain using cameras with
known intrinsic parameters, unknown position and orienta-
tion, and at varying amounts of overlap between images.
Random uniform noise is added to the translation and ori-
entation of the captured images to represent a more realistic
environment with imperfect path control. The process out-
puts positions of points on the ground, and the estimated
camera poses for each image, both in coordinates centered
at the origin of the simulation map. The error of our esti-
mations is assessed by the euclidean distance between the
estimated 3D point and the nearest true 3D points of the
simulation map. We will analyze the effects of the amount
of overlap between consecutive images as well as the effects
of noise of estimation. This process is defined in greater de-
tail in the following sections.

3. Technical Content
3.1. UAV and Terrain Simulation

Open source software Height Map Editor was used to
generate maps. Initially, the scale chosen is 0.1 m per pixel,
and the 8-bit intensity scaled to 0 to 20 m. For development,
a square map representing a 200 m2 area was selected. The
simulation is written in C++, and uses OpenCV for reading
in the height map, and matrix data structures and algebra. A
parameterized number of UAVs travel radially away from

the center of the map with equal angular spacing between
their headings. A simple physics model was used, ignoring
winds or control inputs. The UAVs fly at an altitude of 30 m
(relative to lowest altitude on map) with a constant velocity
of 5 m/s. Each UAVs position and orientation is recorded
every 0.01 s.

3.2. Generating Synthetic Images

Given a cameras position, orientation and forward vec-
tor, a rotation and translation matrix are constructed to
convert world 3D coordinates (centered at the pixel in the
first row and first column) to camera centered coordinates.
Terrain points are projected into image coordinates. Only
points which project onto an 800 by 600 pixel image are re-
tained. The intensity of the points projected onto the image
is determined by first taking the inner product of the unit
normal to a 3 by 3 window at the terrain point and a direc-
tion vector from the terrain point to a simulated light source
above the terrain. Then, the previous inner product is scaled
by the inner product between the unit normal at the terrain
point and the normalized forward vector.

3.3. Preprocessing

To emulate reconstructing topology in environments
which may not contain distinctive rock formations, vege-
tation or buildings, the simulation generates synthetic im-
ages with few distinctive features. Thus, feature matching
across multiple images to create point correspondences is
challenging. To alleviate this difficulty, we first smooth the
image pixels by filtering the image with an isotropic gaus-
sian blur of variable standard deviation, and then use a top-
bottom hat transform of variable morphological operations
to enhance the few features that exist in the image.

The top-bottom hat transform is a common image en-
hancement technique for feature detection in images with
limited information [4]. The top-bottom hat transform can
be described by the following equation:

im = im+ φ(s)− φ(s)

where the φ(s) represents the morphological operation
used in the transform. The addition of the operation from
the image is known as the top-hat filtering of the image,
while the subtraction of the operation is known as the
bottom-hat filtering of the image. This transform will have
the effect of increasing the contrast between the brightest
and dimmest pixels in the image, allowing for improved fea-
ture detection.

3.4. Feature detection and descriptors

The viability of multiple feature detector/descriptor al-
gorithms is assessed for our particular application. Figure 2
summarizes this.
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Figure 2. Summary of the detector/descriptor pairs evaluated for Structure from Motion with synthetic oblique images captured from a
simulated UAV on a linear flight path.

3.5. Feature Matching

After using these algorithms to detect the features in each
image, features in consecutive images are matched using an
exhaustive approach. For each feature in an image, the eu-
clidean distance to every feature in the consecutive image
is computed and a match is accepted when the distance be-
tween a pair of features is less than a percentage from a per-
fect match. As an additionally test to eliminate ambiguous
matches, if two features in a consecutive image are matched
to one in the first, the ratio between the first and second dis-
tance is compared to a set value. If the ratio, is above this
threshold, meaning the distance between the first or second
feature in the image are relatively close, the match is re-
jected from the output. Lastly, if there are two features in
the first image which match to a single feature in the sec-
ond image, the second match is rejected as well. A variety
of values for the two parameters described previously (i.e.
percent pairwise distance from perfect match, and ratio be-
tween first and second best match) were tested to improve
the quality of matches and remove outliers. Figure 3 illus-
trates the output of the feature matching described above.

3.6. Fundamental Matrix Estimation - Camera Pose
Estimation

With correspondences across multiple images, we esti-
mate the fundamental matrix between each pair of images
using random sample consensus (RANSAC) and the nor-
malized 8-point algorithm. To summarize, the algorithm
executes as follows:

1. Repeat for a set number of trials (e.g. 1000)

(a) Randomly select 8 correspondences
(b) Compute the fundamental matrix using the nor-

malized 8-point algorithm
(c) Compute the number of inliers

2. Select the fundamental matrix corresponding to the
maximum number of inliers

Using the fundamental matrix, we can determine the rel-
ative translation and rotation between any two pairs of im-
ages. We then use this to compute the camera position as-
sociated with each image relative to the first image in a set.
This yields the extrinsics of each camera in the reference
frame of the first camera.

3.7. Multiview Triangulation

Since all the cameras are in the same coordinate system,
we can triangulate the location of 3D points from the epipo-
lar geometry of a pair of cameras under the assumption the
intrinsic parameters of the cameras are known. Figure 4 de-
picts how a 3D estimate is computed with two images by
projecting two lines into 3D space: the line from the loca-
tion of the first camera to the corresponding point in the first
image and the line from the location of the second camera
to the corresponding point in the second image. The inter-
section of these two lines is the estimated 3D point which is
estimated up to a scale.

We then use bundle adjustment to refine the estima-
tions of the 3D points and camera poses. The Levenberg-
Marquardt algorithm is used in this process to minimize the
reprojection error of the estimated 3D point projected back
into the set of images. The Levenberg-Marquardt algorithm
is a nonlinear optimization algorithm that converges at a lo-
cal minimum; however, we use our triangulation estimate
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Figure 3. Example subset of correspondences found between two consecutive synthetic oblique images captured from a simulated UAV on
a linear flight path. Image features are represented by blue circles, and correspondences between images are connected by red lines.

Figure 4. Illustration of 3D point triangulation (x) from correspon-
dences in two images (y1, y2) and estimated camera centers (O1,
O2).

as an initial condition to improve the result. The reprojec-
tion error is defined as the euclidean distance between the
3D estimated points projection onto the image plane and its
associated correspondence point. The result of bundle ad-
justment is the final estimate of terrain topology and camera
poses.

4. Experimental Setup and Results
Our experiments involve testing the algorithm using a

variety of parameters to determine which methods work
best for our specific application. Each of these sets of pa-
rameters were tested for each feature detector / descriptor
described in figure 2 and for each set of generated images
associated with varying levels of noise and percentage of
overlap between consecutive image. These tests are sum-
marized in figure 5 where each test used one key-value (first

column-second column) for each test.
This generated a test for each combination of percent

overlap value, feature detector, and whether or not the im-
ages were noised for a total of 140 tests. The median across
all 140 tests is presented as the points in figure 6 and 7.
Each plot shows the median of the estimated 3D points vs.
the percent overlap of the images with lines for each fea-
ture detector. Additionally, the first figure is associated with
the sets of images that do not contain any noise while the
second figure is associated with the sets of images that do
contain noise in the rotation and translation of the camera
poses.

The figures do not include the trials using the FAST or
BRISK features because these techniques did not result in
any estimated 3D points because the reprojection errors af-
ter bundle adjustment were poor. This may be a result of
few features being detected from the images or poor feature
matching between consecutive images.

Our results for estimating the location of the 3D points
in the map show we could generate estimations within a
centimeter or two of a true 3D point. These results may
be acceptable for the navigation of an autonomous vehi-
cle although this would depend on the specific application
(e.g. planetary or ocean exploration), and the risks associ-
ated with the error.

From our experiments with no noise added to the pose of
the cameras, our results (Figure 6) for the use of MSER and
HoG as features show a steady increase in the error of our
estimations as the separation between images increase. This
result makes intuitive sense since with greater overlap, there
will be many more available points and features to detect
and create correspondences. We do not believe the trend
for harris corner or SURF features are significant and may
depend on variations in the estimation of the fundamental
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Figure 5. Chart of parameters used in various tests.

Figure 6. The median distance from a reconstructed point with low
reprojection error to its closest point on the terrain as a function
of the overlap between consecutive synthetic oblique images cap-
tured by a simulated ideal UAV on a linear flight path with perfect
pose controls.

matrix for various parameter sets among other factors.
Figure 7, which is associated with the sets of images

with noise added to the camera poses, shows other trends
and illustrates the trade-off between errors in triangulation
and feature detection / matching depending on the amount
of overlap between consecutive images. Every image has
different noise in its actual relative to its expected pose.
Therefore, the relative heights of the curves are rough in-
dicators of how robust each feature detector is to variance
in pose between consecutive images with features like our
images. SURF appears to perform best with the fewest im-

Figure 7. The median distance from a reconstructed point with low
reprojection error to its closest point on the terrain as a function
of the overlap between consecutive synthetic oblique images cap-
tured by a simulated UAV on a linear flight path with imperfect
pose controls.

ages. Then, the curves for all feature detectors are bell-
shaped, reaching their peak error at about 70% overlap be-
tween consecutive images, and decreasing in error as image
overlap increases or decreases from 70%. The decrease in
error can be understood from two separate explanations.

First, when there is more overlap between the images,
there will be more potential features and therefore more true
correspondences across two pairs of images. The increase
in the number of correspondences will make execution of
RANSAC more robust to outliers in the data, and therefore
improve the estimation of the fundamental matrix as well as
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the estimation of the camera locations used in triangulation.
However, since the cameras are closer together, noise will
have a greater impact on the estimation of the depth.

Second, when there is less overlap between consecutive
images and thus the baseline between two cameras is fur-
ther apart, triangulation is more robust to noise and will
improve estimation efforts; however, there are fewer poten-
tial features to be matched and the process of estimating
the fundamental matrix could be more susceptible to out-
liers. We did achieve lowest error with this setting of the
experiment where there is a longer baseline. The explana-
tion could be that moderate pose estimation error has less of
an effect when images are farther apart than when the im-
ages are closer together, but this conclusion should be tested
further.

5. Conclusion
This study has developed a software pipeline consist-

ing of a C++ simulation followed by Matlab scripts which
generate synthetic images, and a 3D metric reconstruction
from these. The pipeline was developed with the case of
a UAV on a linear flight path taking oblique images from
a single camera. For four feature detector/descriptor pairs,
curves representing reconstruction error as a function of im-
age overlap were plotted. Further, the robustness to uncer-
tainty in the cameras pose of the descriptors was charac-
terized for our simulation scenario. This could be useful
to indicate how to best process images collected from a real
UAV on a linear flight path over a barren, featureless terrain.
We have demonstrated the usefulness of our pipeline to as-
sist in designing exploratory missions which seek to map
territory. Future work could add complexity to the vehicle
dynamics and path planning, explore the effect of terrain
roughness, and integrate images from multiple vehicles in
the triangulation.

6. References
[1] Wilcox, Brian H. ”Robotic vehicles for planetary

exploration.” Applied Intelligence 2, no. 2 (1992): 181-193.

[2] Stoker, Carol. ”The search for life on Mars: The role
of rovers.” Journal of Geophysical Research: Planets 103,
no. E12 (1998): 28557-28575.

[3] Matthies, Larry, Mark Maimone, Andrew Johnson,
Yang Cheng, Reg Willson, Carlos Villalpando, Steve
Goldberg, Andres Huertas, Andrew Stein, and Anelia
Angelova. ”Computer vision on Mars.” International
Journal of Computer Vision 75, no. 1 (2007): 67-92.

[4] Li, Linhui, Jing Lian, Lie Guo, and Rongben Wang.
”Visual Odometry for Planetary Exploration Rovers in
Sandy Terrains.” International Journal of Advanced Robotic
Systems 10 (2013).

[5] Otsu, K., M. Otsuki, and T. Kubota. ”A comparative
study on ground surface reconstruction for rough terrain
exploration.” In International Symposium on Artificial
Intelligence for Robotics and Automation in Space. 2014.

[6] Ishigami, Genya, Masatsugu Otsuki, and Takashi
Kubota. ”Rangedependent Terrain Mapping and Multipath
Planning using Cylindrical Coordinates for a Planetary
Exploration Rover.” Journal of Field Robotics 30, no. 4
(2013): 536-551.

[7] Dai, Fei, Youyi Feng, and Ryan Hough. ”Pho-
togrammetric error sources and impacts on modeling
and surveying in construction engineering applications.”
Visualization in Engineering 2, no. 1 (2014): 1-14.

[8] Recker, Shawn, Mauricio Hess-Flores, Mark A.
Duchaineau, and Kenneth I. Joy. ”Visualization of scene
structure uncertainty in multi-view reconstruction.” In
Applied Imagery Pattern Recognition Workshop (AIPR),
2012 IEEE, pp. 1-7. IEEE, 2012.

[9] Rupnik, Ewelina, Francesco Nex, Isabella Toschi,
and Fabio Remondino. ”Aerial multi-camera systems: Ac-
curacy and block triangulation issues.” ISPRS Journal of
Photogrammetry and Remote Sensing 101 (2015): 233-246.

6


